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1 Introduction and Scope 
One of the most unusual and interesting results of quantum mechanics is the 
prediction of tunnelling, i.e. the ability of a particle (or system of particles) to 
exist in, or pass through, a region of space where its total energy is less than its 
potential energy. According to classical mechanics, such a phenomenon is 
impossible, but in quantum mechanics it is a natural result of the probabilistic 
interpretation of wavefunctions, by which the states (position, momentum, 
energy, etc.) of atomic and molecular systems are specified. In view of this non- 
classical wave nature ascribed to particles, there is a certain logical inconsistency 
in using the classical word 'tunnelling' to describe the above phenomenon. The 
usage is universal, however, and seems to be entirely sensible in a probabilistic 
sense. 

The physical importance and consequences of tunnelling have been recognized 
since the very earliest days of quantum mechanics. Hundl discussed the prob- 
ability of intramolecular rearrangements via tunnelling in 1927, and the follow- 
ing year the importance of tunnelling in the decay of radioactive nuclei was 
described.2 As early as 1932, Wigner3 discussed tunnelling with a view aimed at 
chemical kinetics; in the same year, the tunnelling mechanism responsible for 
the doubling of certain spectral bands of ammonia was ~larified.~ Since these 
earliest days numerous experimental and theoretical studies have been performed 
to describe quantitatively the mechanisms and consequences of tunnelling in 
chemical systems. 

In this article, we will review some of the areas in which tunnelling has been 
of significance over the years since its recognition. Several reviews and dis- 
cussions of particular areas have appeared in the past. For example, Johnstons 
and Caldin6 have provided reviews of various aspects of proton tunnelling in 
ordinary chemical reactions, and the significance of tunnelling to the under- 
standing of the hydrogen bond has been well-described.' The theory and certain 
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experimental aspects of tunnelling methyl groups have been reviewed,* and 
Lowdins has discussed tunnelling from a biological viewpoint. The view pre- 
sented here will be less specific, with the aim toward stressing the unity of the 
phenomena together with the differences. 

In order that the general features will be understood, we present in the next 
section an elementary theoretical discussion of tunnelling. Following this we 
shall move directly to a consideration of some chemical applications. We shall 
avoid tunnelling phenomena which lie principally in the realm of physics 
research, such as electron tunnelling through superconductor junctions.1° 

2 Theoretical Characteristics of Tunnelling 

A. Free Particle Incident upon a Potential Barrier.-As a simple illustration we 
consider a particle of mass rn moving in one dimension from left to right 
through a rectangular potential barrier. Two cases may be distinguished [see 
Figures l(a) and l(b)], depending upon whether the potential energy to the right 
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Figure 1 Simple one-dimensional potential barriers. Incident particle has energy E 

* C.  C.  Lin and J. D. Swalen, Rev. Mod. Phys., 1959, 31, 841. 
* P. 0. LoGdin, Adu. Quantum Chem., 1965,2,213. 
lo J. Bardean. Phys. Rev. Letters, 1961, 6, 57. 
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of the barrier is the same as, or different from, the potential energy on the left. 
These cases are termed symmetrical and unsymmetrical, respectively. 

The solutions yt of Schrodinger's equation 

Z Y =  E??' 

for either case are well-known,ll and may be obtained by joining up functions 
for each of the regions I, 11, and III so that Yt and yt' are continuous at x = 0 
and x = a. Solutions yt exist for both Et > V, and Et -= V,. If the transmission 
coefficient Tis  defined as the probability that a particle will tunnel through the 
barrier, the result is found to bell for the symmetrical case with E < V,, 

4k12k2' T =  
(k12 + k22)2sinh2ak2 + 4k12kz2 

In equation 2, kl = 1/2mE/h and k, = ,/2m(Vo - E)/h. For E > V,, equation 
(2) applies if we replace kZ2 by - k,'' = 2m(E - V,)/h2 and sinh by sin. To get 
some idea how the transmission coefficient depends upon the physical para- 
meters we have plotted Tin Figure 2 as a function of E for both a proton and 
deuteron incident upon a barrier of height 20 kcal mol-l, and width 1 A. This 
Figure indicates clearly that (a) tunnelling decreases markedly as V,/E becomes 
large, and (b) that tunnelling decreases rapidly as the mass of the tunnelling 
particle increases. Further computations show a final feature, namely that 
tunnelling decreases rapidly as the width of the barrier increases. These are the 
chief characteristics of tunnelling which are expected to occur for all systems, 
even those having smoothed potential barriers rather than the square type in 
this example. While it is not shown in Figure 2, the transmission coefficient for 
particles having E > V, is not always unity, that is, there is a small probability 
of reflection above the barrier. 

For the unsymmetrical case of Figure l(b) an expression similar to equation 
(2) may be derived. As a first approximation equation (2) may be applied if it is 
multiplied by k3/k1 where k3 = 1/2rn(E - Vl)/h. Thus as Vl becomes more 
negative (for a fixed incident energy) the transmission coefficient increases. If 
Vl is positive on the other hand, T decreases until eventually (when E - Vl < 0) 
it goes to zero, that is, the probability of escaping to x 3 u vanishes. These 
effects of the unsymmetrical barrier have often been overlooked in the past, but 
their importance has been particularly emphasized by Johnston et al.l2 

In general, tunnelling may be of significance in chemical phenomena when 
the wavefunction describing the tunnelling particle has a significant amplitude 
across the barrier region. Thus the de Broglie wavelength A = h/p provides a 
suitable qualitative measure for predicting relative tunnelling efficiencies. For 
particles of atomic mass 1, 2, 5,  10, 20, 50, and 100 having identical energies of 
20 kcal mol-l, the de Broglie wavelengths are 0.31, 0-22, 0-14, 0.097, 0.068, 

l1 (u) L. Landau and E. Lifshitz, 'Quantum Mechanics', Addison-Wesley, Reading, Mass., 
1958; (b) H. Eyring, J. Walter, and G. E. Kimball, 'Quantum Chemistry', John Wiley, New 
York, 1944; (c) D. Park, 'Quantum Theory', McGraw-Hall, New York, 1964. 
l8 H. S. Johnston and J. Heicklen, J .  Phys, Chem., 1962.66, 532. 
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Figure 2 Transmission coefficient as a function of particle energy. Curves a and b are for  
deuteron and proton, respectively, incident upon rectangular barrier 20 kcal mol-' high and 
1 A wide. Curve c is for  proton incident upon parabolic barrier of same height and base width 

0.044, and 0.031 A respectively. From these values it is clear that only the very 
lightest particles have a de Broglie wavelength comparable to the width of 
barriers in molecular systems ( & - 1  A). Nevertheless, tunnelling of heavier 
particles may still be observable if the barrier height is sufficiently low, or the 
barrier width sufficiently small. 

Since the sharp-edged rectangular barrier is not a very realistic one for 
physical situations, other functional forms have been investigated. Figures l(c) 
and l(d) show two of those for which exact equations for the transmission 
coefficient exist. In Figure l(c), the functional form is 

Y(x) = Vo/cosh2ax (3) 
and the transmission coefficient is given bylS 

l* See ref. 11 (a), p. 77. 
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sinh2( nk/ a) T =  - _- 
sinh2(nk/a) + cosh2[(.rr/2) 1/(8rn V,/h2a2) - 11 

when, as is typical, the square root term is greater than zero. In equation (4) 
k = ,/m/fi and E < V,. This symmetrical potential function is a special case 
of a more complicated function first investigated by Eckart.14 

The potential in Figure l(d) is an inverted parabola for -a < x < + a, 

V ( X )  = Vo(l - 5) 
and V(x) = 0 otherwise. An exact calculation for the transmission coefficient 
 yield^^^--^^ for this case 

___._ 

for all values of E> 0, where y = 1 - E/V, and 
Each of the latter two potential functions of Figure 1 has been used rather 

extensively in practical applications. The potential of equation ( 5 )  has been par- 
ticularly appealing because of its simplicity and the simple resulting expression 
for Tgiven in equation (6). In Figure 2, equation (6) has been plotted for a proton 
incident upon a barrier having V,  = 20 kcal mol-l and 2a = 1 A. The simplified 
Eckart potential of equation (3) and Figure l(c) is undoubtedly more realistic 
than the parabolic form, however, particularly because of the absence of the 
discontinuities present at x = 2 a in the latter function. Both of the barrier 
functions yield transmission coefficients having the same strong dependence 
upon E, V,, and barrier width, although the details differ quantitatively. 

= 27r2a42mV0/h. 

B. Bound Particle Tunnelling through Potential Barriers.-Here we consider 
bound particles which may exist in two or more potential energy minima 
separated by potential maxima. We show in Figure 3 one of the common poten- 
tial functions of this form. Numerous types are encountered in physical problems, 
including functions having non-equivalent maxima and minima. In this section 
we shall merely consider the behaviour of a single particle of mass rn moving 
in the double-minimum potential of Figure 3, but it is perhaps useful to mention 
that this potential is applicable to the inversion motion of the protons of 
ammonia. 

The principal quantum mechanical feature of systems such as this is that all 
particle energies are not now available, i.e. Schrodinger's equation (equation 1) 
permits only certain energy states. For the double-minimum potential, the 
qualitative appearance of the lower-energy states has been shown in Figure 3. 

l4 C. Eekart, Phys. Rev., 1930, 35, 1303. 
lS See ref. 11 (a), pp. 177-178. 
l' R. P. Bell, Proc. Roy. SOC., 1935, A148, 241. 
l7 R. P. Bell, Trans. Furuduy SOC., 1959, 55, 1 . 
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Figure 3 (a) Typical double-minimum potential; (b) qualitative forms of wavefunctions of 
lowest states 

The characteristic feature is that below the barrier top the states occur as closely- 
spaced doublets. As the top of the barrier is approached the doublet spacing 
increases, and above the barrier the doublet structure finally disappears. Also 
shown in Figure 3 are the qualitative appearances of the eigenfunctions for the 
two lowest pairs of states. Note that the probability distribution (y2) is identical 
in the two equivalent wells, and is non-zero in the region of the barrier. 

The question which must now be considered is what is meant precisely by 
tunneZZing in such a system. Suppose we found by some measurement that at a 
certain time the particle existing in the potential of Figure 3 had an energy of 
E$(v = 0, + symmetry), and were asked where the particle was located. The 
acceptable answer is that there is a 50% probability that the particle existed 
in the region x < 0 at the time of the measurement; somewhat more approxi- 
mately we might state that the particle has an equal probability of existing in 
either well. This answer is the proper one according to the interpretation of 
stationary states. 

Suppose instead, that a measurement of position made at some time t = 0 
showed positively that the particle was in the left-hand well with an energy of 
approximately EZ N E,.  We ask now where the particle might be found at 
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t > 0. To answer this question it is necessary to utilize the concept of non- 
stationary states, since the certain presence of the particle in the left-hand well 
means it is not in any of the stationary states. Berryls has described some of the 
general principles that must be considered. The simplest resulting view is that 
non-stationary states may be experimentally observed if the average lifetime of 
the state is long compared to the characteristic time involved in the particular 
measuring technique being used. For the particular case considered bere, the 
most elementary theory19 leads to the conclusion that the particle tunnels between 
the left and right wells, represented by the non-stationary states y6 + y, 
and yi - Y;, respectively, at a frequency 

2(E, - Eif) 
v: = 

h (7) 

Thus at the time t = l/vt the particle is in the right well, while at t = 2/vt  
it is again back in the left well. 

It is clear that the doublet separations provide a direct measure of the tunnel- 
ling rate or average lifetime of a non-stationary state of the particle. Much more 
sophisticated analyses have been performed,20p21 but this simple result is satis- 
factory for symmetrical barriers of the double-minimum type when the doublet 
spacings are small compared to the separation between states of different v. 

For the free particle case it was found that the tunnelling probability might 
increase or decrease when the potential became unsymmetrical, depending upon 
whether the right-hand potential decreased or increased. For the bound particle 
case, the tunnelling rate usually decreases very markedly when any small asym- 
metry is introduced in the right-hand well. If, for example, the right-hand well is 
deepened by an amount equal to 1 % of Yo, the tunnelling rate may decrease by 
as much as a factor of 100. As shown by the computations of Somorjai and 
Hornig,22 this effect is caused not by any major change in the structure of the 
energy levels, but by the localization of the stationary state wavefunctions in 
either the left or right well. Thus in the case above, the lowest energy state yo 
represents a particle largely localized in the slightly deeper right well, while 
in the next-lowest state yl the particle is largely localized in the left-hand well. 
Then a particle definitely known to be in the left well at t = 0 will have a non- 
stationary state function of the form yl + c y 0  where c2 < 1. This particle 
will eventually appear in the right well (state yo + but it will take a time 
longer by a factor on the order of c2 than that of the symmetrical case. This 
problem has been treated quantitatively by Brickmann and Zimmermann,21v23 
who show, for example, that an offset of the minima of only 20 cm-l in a 
double-minimum potential with a barrier of N 6000 cm-l leads to a decrease in 

R. S. Berry, Rev. Mod. Phys., 1960, 32, 447. 
See, for example, C. H. Townes and A. L. Schawlow, ‘Microwave Spectroscopy’, McGraw- 

Hill, New York, 1955, Chap. 12. 
xo P. 0. Lowdin, Biopolymers Symp., 1964, 1, 161. 
x1 J. Brickmann and H. Zimmermann, J. Chem. Phys., 1969,50, 1608. 

R. L. Somojai and D. F. Hornig, J .  Chem. Phys., 1962,36, 1980. 
la J. Brickmann and H. Zimmermann, Ber. Bunsengesellschafr Phys. Chem., 1966, 70, 157. 
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vt of a factor of ca. 100. An expression for vt which is equivalent to Brickmann 
and Zimmermann's result in the limit of small asymmetry and small tunnelling 
is24 

where vto is the tunnelling rate for the limiting symmetrical potential, 2dE = 
hvto and d Y is the difference in the energy of the minima. As an example, 
vto might be 2 x 1O1O s-l, which means dE N 1 cal mol-l. If the minima differ 
by 1 kcal nio1-l (d V = 1000 cal mol-l), the tunnelling rate is decreased by 
a factor of ca. 1 x It is evident that very serious errors may arise if a 
symmetrical function is utilized to approximate an unsymmetrical one in 
tunnelling calculations. 

From the foregoing it is seen that the tunnelling properties in bound systems 
are adequately described if the energy level doublet separations are known. In 
principle these energy levels are obtained by solving equation (1) using an appro- 
priate potential function V(x) as in Figure 3. Very few exact analytic solutions 
are available, however, for realistic potentials. The best known is probably 
the symmetrical Manning potential26 

X X V(x)  = A sech4- - B sech2- 
2P 2 P  

where A, By and p fix the precise size and shape of the function. Although an 
exact formal solution of equation (1) has been obtained using this function, no 
simple expression for the doublet spacing results. 

Most attempts at relating the doublet spacings, dE, ,  to the physical para- 
meters (mass, barrier height, shape, and width) have used approximation 
methods of some The most commonly used method is the WKB approxi- 
mation which was first applied to the double-minimum system by Dennison and 
Uhlenbe~k.~ The general result given by this treatment is 

AEv = hv - exp( - P,,dx) 
7r 

where Po = 42m(V - Eu), v is the (harmonic) oscillation frequency within 
each well, and x1 is the value of x for which Ev = Y i n  the barrier region. This 
method shows clearly that d E v  is determined primarily by the area under the 
barrier, but is not greatly affected by its precise shape. The integral in equation 
(10) has been evaluated analytically for a few simple barrier but in 
general the problem has been treated numerically. 

Recently we suggested an approximate expression27 for the symmetric double- 
*' M. D. Harmony, to be published. 

ae N. Rosen and P. M. Morse, Phys. Rev., 1932,42,210; F. T. Wall and G. Glocker, J. Chem. 
Phys., 1937, 5,  314. 
IT M. D. Harmony, Chem. Phys. Letters, 1971, 10, 337. 

M. F. Manning, J .  Chem. Phys., 1935, 3, 136. 
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minimum potential which shows clearly the dependence of d E ,  upon the physical 
parameters, and which is expected to be valid for cases of small tunnelling 
(small dEo)  when each well is more or less parabolic (harmonic) in character. 
This equation 

aha3Ia AEo/h = xp( - aa2) 
2mnJ 

is independent of the precise shape and height of the barrier, but depends 
strongly upon the separation of the minima (2a), the mass (m), and the oscillator 
frequency (v) in each well (a = 27~vm/fi). Also, a maximum barrier height of 
2n2v2a2m is implied. Corrections to equation (11) to account for the barrier shape 
and height have been derivedYa7 but the equation itself provides a useful semi- 
quantitative means for predicting dEo. In Figure 4 we have shown the variation 
of vt (= 2AE,/h) for both a proton and a deuteron as a function of the separation 
of the minima for a fixed value of the well force constants (k = 47r2v2m). 

t 

-16 1 \ 

0.4 0.8 1.2 1.6 2 .o 

Figure 4 Dependence of tunnelling frequency upon the separation of the potential well minima 
(computed from equation 1 1 )  for a proton and a deuteron. k = 3 x lo6 
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Finally we should mention that numerical solutions for the energy level 
splittings may be obtained to any desired accuracy by using the matrix mechanics 
technique.22s28 There is, of course, a loss of simplicity in this type of computation, 
but it is recommended when the experimental data are sufficiently good to 
warrant the computational effort. 

C. The ReIationship between Bound- and Free-particle Tunnelling Cases.- The 
discussion in Section 2A was couched in terms of transmission probability, T, 
while that in Section 2B was in terms of tunnelling frequency, vt. We can, in 
fact, also state the properties of free-particle tunnelling in terms of a tunnelling 
frequency. This is done merely by multiplying T by the rate at which particles 
strike the barrier. Thus if vi particles/second strike the barrier (or equivalently, 
if a single oscillating particle strikes the barrier vi timeslsecond), the tunnelling 
frequency is vt = vi T. 

This suggests that bound-particle tunnelling might be treated by performing 
a free-particle tunnelling calculation using equations (4) or (6),  for example, and 
then multiplying this by the oscillator frequency v which is appropriate for the 
potential wells of interest. Although this seems a reasonable approach, it will 
generally lead to a serious underestimation of vt, particularly for symmetric 
potentials. In simple terms this is because for bound particles there is a kind 
of resonance between the two wells, so that each time the bound, oscillating 
particles in the left well strike the barrier they transmit a certain probability 
amplitude to the right well. This probability then builds up, since the particles 
are not free to escape to x = + co. On the other hand, this mechanism is not 
operable for the free particle, since once through the barrier the particles con- 
tinue to x = + co. A more detailed discussion of this matter has been given 
recently.23 

3 Tunnelling in the Real World 
In the real world of molecules and chemistry, the tunnelling of a single particle 
along a one-dimensional co-ordinate may seem a highly unlikely model to 
apply. Indeed, the real potential surfaces of molecules and molecule-aggregates 
are complicated and many-dimensional, and all the nuclei in the system are 
undergoing at least small oscillations. In many cases several nuclei must be 
undergoing large displacement motions. Still, it has proved to be possible to 
treat many real systems as judiciously selected one-dimensional problems. The 
validity of such one-dimensional models is normally judged by the extent of 
agreement with available experimental data. Unfortunately, since the many- 
dimensional problems are still impractical from a computational viewpoint, 
there has been little work performed for more than one-dimensional problems.2a 

A few examples should show how real systems are turned into one-dimensional 
cases. An intra- or inter-molecularly hydrogen-bonded proton is a rather simple 
case.' It clearly has stable equilibrium positions (wells) about which it under- 

J. D. Swalen and J. A. Ibers, J. Chem. Phys., 1962, 36, 1914. 
yoT. R. Singh and J. L. Wood, J .  Chern. Phys., 1968,48,4567. 
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goes small oscillations. To get from one stable well to another it must tunnel 
through a potential barrier following a path not really known in most cases, but 
assumed to be more or less along the lines representing the hydrogen bonds. 
Because, in general, the tunnelling proton is much lighter than the remainder of 
the system, only the motion of this single particle need be considered. 

In many cases it is clear that several nuclei undergo simultaneous tunnelling. 
The umbrella inversion motion of the ammonia molecule provides a good 
illustration : 

The protons move along a path similar to, but not identical with, the normal 
co-ordinate for the symmetrical (v2) bending mode. The potential energy as a 
function of the height of the pyramid is of the form of Figure 3, with the maxi- 
mum corresponding to the planar configuration. Although all three protons 
move during the tunnelling motion (the nitrogen moves also to ensure that the 
centre of mass remains constant), the kinetic energy may be represented correctly 
by the motion of a single particle of reduced mass, p.28 Calculations show that 

3(14)(1) or more approximately, p - 3. ‘ 1 4  + 3(1)’ 

As a final example, consider the ordinary chemical reaction involving proton 
or hydrogen atom transfer. The potential surface here is indeed not simple, 
since even the most elementary treatment indicates that the energy surfaces must 
be considered to be a function of two bond distances, the one being broken and 
the other being formed. But according to ordinary transition state theory, there 
does exist a low-energy pathway, known as the classical reaction path, along 
which the proton may be considered to move. Actually this view is much too 
naIve, of course, and one should investigate other possible paths over the saddle 
point region which are energetically feasible.30 Nevertheless we see again how, 
in an approximate way, a complicated motion is reduced to a simple one- 
dimensional problem. We will have more to say about the reaction path later. 

4 Experimental Observation of Tunnelling 

A. General Considerations.-As for most molecular phenomena, the existence 
of tunnelling is best detected by its effects upon various macroscopic or micro- 
scopic equilibrium and non-equilibrium properties which are measureable in 
the laboratory. The most direct and quantitative method is the spectroscopic 
observation of the doublet splitting of the stationary-state energy levels in a 
bound system such as ammonia. Thus the splittings of the v = 0, 1, and 2 states 
of NH3 (and its various deuteriated forms) have been observed by microwave 

*O H. S. Johnston and D. Rapp, J. Amer. Chem. SOC., 1961, 83, 1. 
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and i.r. spectroscopy, and the agreement of the observations with the double- 
minimum model2* leads one to conclude that ammonia is indeed a tunnelling 
system. One might argue that these observations have nothing whatever to do 
with tunnelling, which is true in the sense that no rate phenomena were being 
observed, but unless some other quantum mechanical explanation of the 
doublet splittings can be deduced, the tunnelling conclusion is inevitable. In fact, 
there is other evidence for tunnelling in ammonia which is of a rate nature. The 
shifts of the rotation-inversion states of ammonia in a static electric field (Stark 
effect) are found to be second-order in the field strength (cc E2), which implies 
that the dipole moment of the molecule is effectively This is reasonable 
only if the molecule is inverting very rapidly, as indeed it is (kz lofo s-l). In 
contrast, phosphine inverts by tunnelling very slowly (the doubling of z lod s-l 
has been too small to observe spectroscopically) and should exhibit a first-order 
Stark effect characteristic of a rigid non-planar symmetric rotor. 

One of the earliest studies providing evidence for tunnelling involved the 
determination of thermodynamic functions (particularly the entropy) of mole- 
cules. Thus a calorimetric determination of the entropy of a molecule must agree 
with that evaluated by statistical mechanical means. It was found, for example, 
that agreement was possible for ethane only if, in the statistical theory, the 
torsional (harmonic vibrational) mode was replaced by a large amplitude mode 
which permitted tunnelling of methyl protons between three equivalent minima.32 
As with ammonia, the characteristic feature of the energy levels for ethane is 
the presence of closely-spaced pairs of doublets below the barrier maxima. 

For chemical reactions involving transfer of light nuclei such as protons or 
deuterons, the effects of tunnelling are shown by the reaction rate constants. 
Usually it is necessary to measure either the isotope effect ( k ~ / k ~ )  or the temper- 
ature dependence of the rate constant. The presence of appreciable tunnelling 
will usually lead to (a) greatly enhanced isotope  effect^,^^^^ (b) non-linear 
Arrhenius plots,6 and (c) unexpectedly large differences in effective activation 
energies for H and D species6 In practical cases, one or more of these pheno- 
mena may be observed, depending on the accuracy of the data, the temperature 
range studied, and, of course, the magnitude of the tunnelling. 

Other measurements having the potential for detecting tunnelling include 
electron diffraction and n.m.r. The latter technique has particular advantages, 
since it has the possibility of distinguishing, via temperature-dependence studies, 
the rate at which molecules undergo intramolecular conversions. As an example, 
the n.m.r. spectrum of aziridine shows the ring protons to be all equivalent (even 
at low temperatures), indicating that the amino-proton is inverting fast on the 
n.m.r. time-scale. On the other hand, the spectrum of tetramethyla~iridine~~ 
shows two pairs of non-equivalent methyl groups, indicating slow inversion. 

31 D. K. Coles and W. E. Good, Phys. Rev., 1946,70,979; J. M. Jauch, Phys. Rev., 1947,72, 
715. 
8a J. D. Kemp and K. S. Pitzer, J.  Chem. Phys., 1936,4,749. 
3a A. Warshel and A. Bromberg, J. Chem. Phys., 1970,52,1262; A. Bromberg and A. Warshel, 
J .  Chem. Phys., 1970,52, 5952. 

T. J. Bardos, C. Szantay, and C. K. Navada, J. Amer. Chem. SOC., 1965, 87, 5796. 
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The difficult problem is knowing whether the inversion is influenced by tunnelling 
or whether it is simply a classical process involving transfer over the barrier. 
As with the proton-transfer reactions, the isotope effect and temperature depend- 
ence should, in principle, permit tunnelling to be detected. In fact, in the tetra- 
methylaziridine case, the reported value of Eu(H) - &@) = -3.3 kcal is 
considerably larger than expected from zero-point energy differences, and 
consequently it seems likely that tunnelling is involved. 

B. Intramolecular Tunnelling.-For a macroscopic sample of a substance A, 
which converts unimolecularly via a double-minimum potential to a substance 
B, the effective rate constant may be written3s 

keii = Cf( i )  vA--+B(i) 
I 

where vA&) is the reaction (isomerization) rate for 
andf(i) is the fraction of all molecules in any state ~t as 

species of energy ~ t ,  
given by Boltimann’s 

energy distribution. The summation for all states above the top of the bar- 
rier reduces approximately to a single term of the classical Arrhenius form, 
A exp( - Eu/kT), where A is essentially one-half the classical vibrational fre- 
quency and Eu is the energy difference between the lowest state (v = 0) and the 
first state above the barrier. For states below the barrier top, YA+B is replaced 
by the tunnelling frequency, vt, calculated by the methods of Section 2B, and the 
summation is carried out for all states v below the barrier maximum. In general 
it is clear that equation (12) does not lead to Arrhenius-type behaviour (linear 
Ink vs. l/T). In particular, if the ground-state tunnelling rate [vt(O)] is large 
enough, keff  will be essentially temperature independent at low temperature. 

To illustrate equation (12) we have computed kerf for N-H- and N-D-aziridine. 
The potential barrier V, is taken as 5000 cm-l ( NN 14 kcal mol-l), and the other 
input data are: vt(0) = 180 s-l, v = 1200 cm-l, A = 1013 s-l, and Eu = 4800 
cm-l for the (CH,),NH species; vt(0) = 1.8 x v = 850, A = 0.7 x 1013 
and Ea = 5100 for the (CH2),ND species. The vt(0) values were obtained by 
using equation (1 l),,’ and the vibrational energy levels are assumed to be harmonic 
in behaviour. Tunnelling rates for the other states below the barrier top are 
obtained from the vt(0) values by assuming a factor of 30 increase for each 
succeeding state. Figure 5 shows the results of this computation. Note in par- 
ticular the different high- and low-temperature behaviour. There is considerable 
uncertainty in these calculations, but the results do indicate that the (CH,),NH 
species probably inverts too fast to observe on the n.m.r. time scale, in agree- 
ment with experimental results. On the other hand, the (CH2),ND species rate 
should be observable by n.m.r., and perhaps the transition region between the 
low- and high-temperature behaviour may be accessible. 

In the past several years a number of authors have discussed intramolecular 
conversions from both the classical Arrhenius and the tunnelling points of view. 

ab R. E. Weston, J.  Amer. Chem. SOC., 1954, 76, 2645. 
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Figure 5 Efective rate constant for ariridine inversion as a function of temperature. Curve (a) 
is for (CH2)aNH species, (b) for (CHa),ND species. See text for input data 

W e s t ~ n ~ ~  and Koeppl et aLa6 considered the rate of inversion of XY3-type species 
(including XY,Y2Y3 forms) similar to ammonia. Using a method first devised 
by Costain and S ~ t h e r l a n d ~ ~  for obtaining an approximate double-minimum 
potential, these workers predicted the inversion rates for many pyramidal 
species. One of the principal interests was in ascertaining whether the asym- 
metric forms converted sufficiently slowly to show optical activity experimentally. 
From these studies it was shown that when X = P or As, the conversions would 
be slow by either tunnelling through, or passage over, the barrier for a variety 
of Y groups, and hence the observed3* optical activity in molecules of this type 
was verified. 

Another interesting series of studies was provided by the experimental observa- 
tion of the fluorine equivalence of PF5 in n.m.r. Berry40 first postulated 

so G. W. Koeppl, D. S. Sagatys, and G. S. Krishnamurthy, J. Amer. Chem. Soc., 1967, 89, 
3396. 
C. C. Costain and G. B. B. M. Sutherland, J.  Pliys. Chem., 1952, 56, 321. 

s8 K. Mislow, ‘Introduction to Stereochemistry’, Benjamin, New York, 1965. 
H. S. Gutowsky, A. D. McCall, and C. P. Slichter, J.  Chem. Phys., 1953, 21, 279. 

‘CI R. S. Berry, J. Chem. Phys., 1960, 32, 936. 
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a suitable mechanism for this involving a large amplitude internal motion 
following more or less the E normal vibrational mode of this Dsh species. Later 
Holmes41 performed more extensive theoretical studies of a variety of related 
phosphorus species. The most startling result was that the tunnelling mechanism 
for PF, was found to be about as favourable as the classical over-the-top mech- 
anism at room temperature even though the tunnelling particles (fluorine nuclei) 
are relatively heavy. The reasons for this seemingly anomalous result are that 
the barrier is not too high or wide, but more importantly the number of states 
below the barrier top is large ( w  21). The latter fact permits a net tunnelling 
(summed over all the levels) which is appreciable, even though the ground state 
tunnelling frequency ( x  s-l) is quite small. M~etter t ies~~ has reviewed 
much of the recent experimental work on fluxional motions of the type shown 
for PFs. In view of the PF5 results, it seems likely that tunnelling motions may 
be responsible for some of the observations of large amplitude intramolecular 
motions. However, it must be remembered that for suf€iciently low and wide 
barriers the motions will most likely be dominated by passage over the barrier 
via the excited vibrational states. 

is 
interesting. These workers found this species to be effectively non-polar at high 
temperatures and polar at low temperatures. One proposed explanation of 
this is that IF, undergoes a large amplitude motion of the double-minimum type, 
with only a few states below the barrier. At low temperature, the beam deflection 
measurements are dominated by the lowest states, which are polar, whereas at 
high temperature they are dominated by the states near to or above the barrier, 
which are effectively non-polar. Tunnelling may be playing a role here, but the 
data are not conclusive with respect to the detailed dynamical processes. 

As a final example, the molecular beam study of IF, by Kaiser et 

C. Intermolecular Tunnelling, Proton Transfer Reactions, etc.-In the simplest 
version of ordinary transition state theory of chemical kinetics, bimolecular 
reactions are postulated to occur by the passage of the reactants through some 
high energy transition state and then on to products. In this view, reactants 
must pass over a potential barrier to produce products. If tunnelling through 
the barrier is permitted, the true quantum mechanical rate constant is obtained 
by applying a correction factor, r, to the classical rate constant calculated with 
neglect of tunnelling: 

kQM = I'k 

To calculate r, one normally assumes that the reactants exist with a two- 
dimensional Maxwellian energy distribution, P(E)  = ( l / kT)  exp( - E/kT).Then 
the quantum tunnelling correction for the one-dimensional reaction path is 
simply the sum over all energies of the transmission probabilities, T(E) [weighted 
by P(E)], divided by the net transmission probability for the classical process : 

41 R. R. Holmes, Inorg. Chem., 1968, 7,2229. 
4n E. L. Muetterties, Accounts Chem. Res., 1970, 3, 266. 
4s E. W. Kaiser, J. S. Muenter, and W. Klemperer, J. Chem. Phys., 1970, 53,53. 
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The denominator achieves the simple form because in the classical process the 
transmission probability vanishes unless E > Vo, when it is unity. The zero of 
energy in equation (14) is that of the reactants, and T(E) is an expression of 
the form of equations (2), (4), or (6). In general, does not have a simple 
temperature dependence, but is expected to approach unity at high tempera- 
tures. It is clear also that In ~ Q M  vs. 1/T will not, in general, produce a linear 
Arrhenius plot, although the quantum contribution to the slope (dln r/d[l/Tl) 
will often not be large. 

Equations (13) and (14) and the theory as outlined have been applied to a 
variety of chemical problems over the years, using primarily the parabolic and 
Eckart barriers for evaluation of T(E). Two general approaches have been used: 
in the first method, experimental isotope effects [ k ~ / k ~ ,  Ea(D) - Ea(H), for 
example] are used to determine the height and width of the potential bairierYs 
usually using the parabolic barrier because of its simplicity; in the second 
approach, the potential energy surface for the reacting system is determined 
by some independent theoretical method, such as that of  sat^,^^ or a more 
sophisticated method such as used by Shavitt et ~ 2 1 . ~ ~  for H + H2. A one-dimen- 
sional barrier (usually of the Eckart-type) is then fit to the computed reaction 
path, the tunnelling contributions are calculated, and the results are compared 
with experimental rate constants, activation energies, and isotope effects. 

Caldin’ss recent review provides good coverage of the former method with 
respect to proton transfer reactions in liquid solution. Although the parabolic 
barrier is not very reasonable physically, and the interpretation of the width 
parameter (2a in equation 5 )  is not entirely clear, the method has been useful in 
describing and correlating trends in barrier parameters for related reactions. 
It should be pointed out that in studies of this type it is usually assumed, either 
explicitly or implicitly, that the tunnelling co-ordinate and the parabolic barrier 
extend from reactant to product; that is, x c - a corresponds to reactant and 
x > a to product in Figure l(d). Furthermore, the tunnelling mass has usually 
been taken to be 1, 2, or 3 a.u. for H, D, or T, respectively. Except for these 
assumptions (which will be discussed shortly), the principal objections one might 
have to these studies is the use of the parabolic barrier. It would be interesting 
to have some of these studies repeated using an Eckart barrier for comparison 
purposes. 

Studies of the second type above have most often been concentrated on simple 
reactions such as H + H2,30p46 or CH3 + H, - CH, + H.6 More recently, 
however, Warshel and B r ~ m b e r g ~ ~  have applied the method to both the initiation 
and propagation steps of the oxidation of dihydrophenanthrene. These studies 

44 S. Sato, J. Chem. Phys., 1955, 23, 2465. 
45 1. Shavitt, R. M. Stephens, F. L. Minn, and M. Karplus, J. Chem. Phys., 1968, 48,2700. 
46 1. Shavitt, J. Chem. Phys., 1968, 49,4048; R. E. Weston, J. Chem. Phys., 1959,31, 892. 
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have left little doubt as to the necessity for tunnelling corrections, and in most 
cases the theoretical results have been in semi-quantitative agreement with 
experiment, although they are strongly dependent upon the detailed model. 
Considering the many uncertainties which exist, it was interesting that WarsheP3 
was able to explain quantitatively a very large isotope effect by a large quantum 
tunnelling isotope effect of r(H)/r(D) = 11.84. 

In all of these studies, the principal uncertainties in determining r are caused 
by uncertainties in (a) proper barrier shape, (6) proper path for tunnelling, and 
(c) proper reduced mass. The most common assumptions of m = 1 a.u. for 
proton transfer, and that a single one-dimensional tunnelling path exists which 
leads from reactants to products, are undoubtedly too naive. Some years ago, 
Johnston and Rapp30 discussed the difficulties in separating out exactly such a 
path for even a collinear reaction of the form AH + B. ShavitP has commented 
on this for the H + H2 case also. Johnston and Rapp have suggested that the 
more proper tunnelling paths should be along lines of slope -45" on the usual 
AH vs. HB contour diagrams. These paths correspond essentially to H motion 
with the end groups motionless. Paths of this kind do not lead from reactant to 
product, and indeed it is usually found that these paths have potential energy 
minima far above those for reactants and products. These workers have sug- 
gested further that the tunnelling factors should be summed over all paths in the 
vicinity of the saddle point, which lends a two-dimensional character to the 
evaluation of r. Nevertheless, this modified method is still only an approxima- 
tion of the real problem. 

The proper reduced mass to use in the tunnelling calculations is intimately 
related to the tunnelling path. For proton transfer between infinitely heavy 
groups along the -45" paths, the proper reduced mass is & a.u.*' For the 
H + H, case, the corresponding asymmetrical stretching normal mode of 
linear H3 would have a reduced mass of & a.u. Most of the simple tunnelling 
comp~tat ions~~ on H + H2 (and isotopic variations) have used a reduced mass 
which corresponds to a path for which the kinetic energy of the three-particle 
system is diagonal from reactants to products. For this path the reduced mass 
for the H + H, reaction is a.u. In any real paths it is probably true that the 
reduced mass is not strictly constant over any extended range of reaction co- 
ordinate. 

Recently there have been a number of papers describing the dynamics of the 
simple H + Ha reactions in a detailed way.** These theoretical studies have 
pointed out clearly many of the inadequacies of the simple treatments, including 
the problems involving reaction paths and the one-dimensional assumption. 
This recent work has also avoided the arbitrary assumption of particular barrier 
shapes (such as Eckart or parabolic barriers) by using numerical solutions of 

47 T. E. Sharp and H. S. Johnston, J. Chem. Phys., 1962,37, 1541. 
'* D. J. Diestler and V. McKoy, J. Chem. Phys., 1968,48,2951; D. G. Truhlar and A. Kupper- 
mann, J. Amer. Chem. Sac., 1971, 93, 1840; R. A. Marcus, J .  Chem. Phys., 1966, 45, 4493; 
E. M. Mortensen, J. Chem. Phys., 1968,48,4029. 
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Schrodinger’s equation to obtain transmission probabilities for the ‘real’ 
potential barrier. 
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